All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Relative Transfer Function Identification on Manifolds for Speech Enhancement

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00008828" target="_blank" >RIV/46747885:24220/21:00008828 - isvavai.cz</a>

  • Result on the web

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2021/10/Manifold_Learning_Beamformer.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2021/10/Manifold_Learning_Beamformer.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616175" target="_blank" >10.23919/EUSIPCO54536.2021.9616175</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Relative Transfer Function Identification on Manifolds for Speech Enhancement

  • Original language description

    Accurate and reliable identification of the relative transfer function (RTF) between microphones with respect to a desired source is an essential component in the design of microphone array beamformers. In this paper, we present a robust RTF identification method on manifolds, tested and trained with real recordings. This method relies on a manifold learning (ML) approach to infer a representation of typical RTFs in a confined area within an acoustic enclosure. We propose a robust supervised identification method that combines the a priori learned geometric structure and the measured signals. A series of experiments using a recently established database of acoustic responses taken at the Bar-Ilan university acoustic lab, demonstrate the effectiveness of the proposed approach over a standard, non-robust, beamforming design method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-17720S" target="_blank" >GA20-17720S: Advanced Mixing Models for Blind Source Extraction</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    European Signal Processing Conference (EUSIPCO 2020)

  • ISBN

    978-908279706-0

  • ISSN

    2219-5491

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    401-405

  • Publisher name

    Eurasip

  • Place of publication

    Ireland

  • Event location

    Dublin

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000764066600081