All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A comparative study of the degradation efficiency of chlorinated organic compounds by bimetallic zero-valent iron nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00009043" target="_blank" >RIV/46747885:24220/21:00009043 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24620/21:00009043

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2022/ew/d1ew00791b/unauth" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2022/ew/d1ew00791b/unauth</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d1ew00791b" target="_blank" >10.1039/d1ew00791b</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A comparative study of the degradation efficiency of chlorinated organic compounds by bimetallic zero-valent iron nanoparticles

  • Original language description

    The efficacy of zero-valent iron nanoparticles (nZVI) in degrading aquatic pollutants could be enhanced by the deposition of other metals on their surface. This article describes the synthesis of bimetallic nZVI with palladium (nZVI/Pd), nickel (nZVI/Ni), silver (nZVI/Ag), and copper (nZVI/Cu). The obtained bimetallic nZVIs were used in the degradation of chlorinated volatile organic compounds (CVOC) such as vinyl chloride (VC), 1,2-dichloroethylene (DCE), trichloroethylene (TCE), and perchloroethylene (PCE) in spiked water and real groundwater. Bimetallic nZVIs demonstrated superior degradation efficiencies compared to pristine nanoparticles. While pristine nZVI degraded ∼6%, ∼57%, and ∼26% of DCE, TCE, and PCE (25 mg L−1, spiked water), respectively, nZVI/Pd and nZVI/Ni degraded all the contaminants completely within 24 h. In addition, nZVI/Pd and nZVI/Ni demonstrated better degradation efficiencies as compared to nZVI/Ag and nZVI/Cu. This efficiency of nZVI/Pd and nZVI/Ni was further observed in the contaminant mixture (total CVOC concentration 25 mg L−1, 24 h of degradation time frame) as well as real groundwater (taken from Novy Bydzov locality). These bimetallic nZVIs demonstrated a significant increase in the degradation efficiency (from ∼10% using pristine nZVI to 99.9% using nZVI/Pd or nZVI/Ni). Even in groundwater, which contains numerous interferants such as organic acids and sulfate anions, bimetallic nZVI/Pd, and nZVI/Ni showed excellent degradation efficiency towards PCE [complete degradation when using nZVI/Pd or nZVI/Ni (24 h)]. Both nZVI/Ag and nZVI/Cu showed only a minor improvement in degradation efficiency.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20701 - Environmental and geological engineering, geotechnics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Science: Water Research & Technology

  • ISSN

    2053-1400

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    162-172

  • UT code for WoS article

    000723744000001

  • EID of the result in the Scopus database

    2-s2.0-85122158548