All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generating Synthetic Vehicle Speed Records Using LSTM

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F23%3A00011353" target="_blank" >RIV/46747885:24220/23:00011353 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-34111-3_12" target="_blank" >https://doi.org/10.1007/978-3-031-34111-3_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-34111-3_12" target="_blank" >10.1007/978-3-031-34111-3_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generating Synthetic Vehicle Speed Records Using LSTM

  • Original language description

    Quality assurance testing of automotive electronic components such as navigation or infotainment displays requires data from genuine car rides. However, traditional static on-site testing methods are time-consuming and costly. To address this issue, we present a novel approach to generating synthetic ride data using Bidirectional LSTM, which offers a faster, more flexible, and environmentally friendly testing process. In this paper, we demonstrate the effectiveness of our approach by generating synthetic vehicle speed along a given route and evaluating the fidelity of the generated output using objective and subjective methods. Our results show that our approach achieves high levels of fidelity and offers a promising solution for quality assurance testing in the automotive industry. This work contributes to the growing research on generative machine learning models and their potential applications in the automotive industry.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/CK01000020" target="_blank" >CK01000020: Development of a GNSS route generator and CANBUS signal with machine learning using Software Defined Radio</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFIP Advances in Information and Communication Technology

  • ISBN

    978-3-031-34110-6

  • ISSN

    18684238

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    125-136

  • Publisher name

    Springer Nature Switzerland

  • Place of publication

  • Event location

    León

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article