All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analytical Solution for Darcy Flow in a Bounded Fracture-Matrix Domain

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012779" target="_blank" >RIV/46747885:24220/24:00012779 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21220/24:00382373

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s11242-024-02130-8" target="_blank" >https://link.springer.com/article/10.1007/s11242-024-02130-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11242-024-02130-8" target="_blank" >10.1007/s11242-024-02130-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analytical Solution for Darcy Flow in a Bounded Fracture-Matrix Domain

  • Original language description

    We derive an analytical solution to a Darcy flow problem in a discrete 1D fracture coupled to a 2D continuum matrix. Separate unknowns for the fracture and matrix domain are considered, coupled by a Robin-type condition. The solution, in the form of a Fourier series, applies to a wide range of problem parameters, covering both conductive and barrier fracture cases. The evaluation procedure and convergence properties are discussed. To validate the solution, we compare it against a numerical solution using second-order finite differences in a parametric study. Our results demonstrate the accuracy and effectiveness of the analytical solution, making it a valuable tool for testing numerical schemes for discrete fracture-matrix models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20401 - Chemical engineering (plants, products)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transport in Porous Media

  • ISSN

    0169-3913

  • e-ISSN

  • Volume of the periodical

    151

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    2777-2794

  • UT code for WoS article

    001336243900001

  • EID of the result in the Scopus database

    2-s2.0-85207023432