All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Economic evaluation of kinetic energy storage systems as key technology of reliable power grids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F24%3A00012592" target="_blank" >RIV/46747885:24310/24:00012592 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1371/journal.pone.0311160" target="_blank" >https://doi.org/10.1371/journal.pone.0311160</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0311160" target="_blank" >10.1371/journal.pone.0311160</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Economic evaluation of kinetic energy storage systems as key technology of reliable power grids

  • Original language description

    In recent years, energy-storage systems have become increasingly important, particularly in the context of increasing efforts to mitigate the impacts of climate change associated with the use of conventional energy sources. Renewable energy sources are an environmentally friendly source of energy, but by their very nature, they are not able to supply the required amount of energy in a uniform distribution. This study evaluated the economic efficiency of short-term electrical energy storage technology based on the principle of high-speed flywheel mechanism using vacuum with the help of an innovative approach based on life cycle cost analysis (LCC). The innovative potential of high-speed flywheel energy storage systems (FESS) can be seen in increasing the reliability of the electricity transmission system with the possibility of providing control power to compensate for residual loads caused by volatile renewable power sources and power sinks. Based on the research conducted, the LCC method was selected in this study as the most appropriate method to evaluate the economic efficiency of a high-speed FESS used to compensate for short-term fluctuations in an upgraded electric transmission system. As a result, the adjusted LCC per MWh values were compared with the average intra-hour margin realisable in the Intra-Day OTE Market, while the margin calculation also considered the efficiency of the inertial storage. Under the modelled technical and economic conditions, it was found that a high-speed FESS project that can compensate for short-term fluctuations in the electricity transmission system can be economically efficient in the Czech Republic.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

    001344593100034

  • EID of the result in the Scopus database