All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Drape prediction from mechanical properties of woven fabrics by means regression analysis and neural networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F04%3A00000123" target="_blank" >RIV/46747885:24410/04:00000123 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Drape prediction from mechanical properties of woven fabrics by means regression analysis and neural networks

  • Original language description

    Fabric drape is very important characteristic connected with aesthetical product appearance. This paper deals with possibilities of drape prediction (DC) of woven fabrics from their mechanical properties, which are measured by means of KES.Multiple linear regression and neural networks in connection with PCA - analysis principal components was used as prediction tools. From 16 basic properties were chosen five mechanical parameters (2HB, 2HG5, MIU, T0, W) and on their base were created tworegression models. These variables were used as input to the neural networks utilizing rational basis functions (RBF networks) Correlation between predicate DC and real DC is very good, nevertheless prediction with help RBF is better, about 0,97.

  • Czech name

    Predikce splývavosti tkanin z mechanických vlastností s využitím regresní analýzy a neuronových sítí

  • Czech description

    Splývavost textilii je jedním z důležitých faktorů, které významně ovlivňují celkový estetický vzhled oděvních výrobků. Příspěvek pojednává o možnosti predikce splývavosti tkanin (DC) z jejich mechanických vlastností měřených systémem KES. Pro predikcibyly využity nástroje vícenásobné lineární regresní analýzy a neuronových sítí ve spojení s analýzou hlavních komponent - PCA.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JJ - Other materials

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    STRUTEX 2004

  • ISBN

    80-7083-891-4

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    321-326

  • Publisher name

    Technická univerzita v Liberci

  • Place of publication

    Liberec

  • Event location

    Liberec

  • Event date

    Jan 1, 2004

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article