Comparison of Regression and Adaptive Neuro-fuzzy Models for Predicting the Compressed Air Consumption in Air-jet Weaving
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F13%3A%230001619" target="_blank" >RIV/46747885:24410/13:#0001619 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs12221-014-0390-x#" target="_blank" >http://link.springer.com/article/10.1007%2Fs12221-014-0390-x#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12221-014-0390-x" target="_blank" >10.1007/s12221-014-0390-x</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of Regression and Adaptive Neuro-fuzzy Models for Predicting the Compressed Air Consumption in Air-jet Weaving
Original language description
The aim of this study was to compare the response surface regression and adaptive neuro-fuzzy models for predicting the compressed air consumption in air jet weaving. The prediction models are based on the experimental data of 100 samples comprising weftyarn count, fabric width, loom speed and reed count as input variables and compressed air consumption as output/response variable. The models quantitatively characterize the linear and quadratic relationships as well as interactions between the input and output variables exhibiting very good prediction ability and accuracy, with ANFIS model being slightly better in performance than the regression model. The models could be used for estimating the compressed air consumption, identifying air leakages andproduction planning in a weaving mill.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JJ - Other materials
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibers & Polymers
ISSN
1229-9197
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
2
Country of publishing house
KR - KOREA, REPUBLIC OF
Number of pages
6
Pages from-to
390-395
UT code for WoS article
—
EID of the result in the Scopus database
—