New Aligned Microfibers for Tissue Engineering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F15%3A00000649" target="_blank" >RIV/46747885:24410/15:00000649 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24620/15:00000649
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
New Aligned Microfibers for Tissue Engineering
Original language description
The present work deals with preparation and subsequent modification of aligned polycaprolactone microfibers made by new semiautomatic drawing technique. This advanced scaffold for tissue engineering combines 3D architecture, large surface area-to-volume ratio, alterable conductivity which closely imitates native extracellular matrix and actively modulating cell functions. New synthetic approach has been chosen for derivatization of aligned polymer fibers, which lack any surface functional groups for immobilization of biomolecules, grow factors or specific amino acid sequences. To overcome this drawback the thin conductive polypyrrole layer was applied on the polycaprolactone fibers by chemical oxidative polymerization from the solution. Thus, in the one simple synthetic step we can modify original fibers with various functional groups presented in the β-position of the pyrrole. Our future goal is to functionalize microfibrous surface with cyclodextrin units using highly efficient copper free click reaction. Finally we gain an aligned microfibrous scaffold covered by immobilized cyclodextrin macrocycles that allow inclusion of proteins during cell cultivation. These nonbonding interactions are relatively weak but the cumulative effect makes them efficient in the complexation of various neutral or ionic molecules. Moreover better environment for cell adhesion and proliferation is being provided.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
CC - Organic chemistry
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nanocon 2015: 7th International Conference on Nanomaterials - Research and Application
ISBN
978-80-87294-63-5
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
399-403
Publisher name
TANGER Ltd.
Place of publication
Ostrava
Event location
Brno
Event date
Jan 1, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000374708800070