All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sandwich structures reflecting thermal radiation produced by the human body

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F21%3A00009519" target="_blank" >RIV/46747885:24410/21:00009519 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/13/19/3309/htm" target="_blank" >https://www.mdpi.com/2073-4360/13/19/3309/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym13193309" target="_blank" >10.3390/polym13193309</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sandwich structures reflecting thermal radiation produced by the human body

  • Original language description

    Far infrared (FIR) textiles are a new category of functional textiles that have presumptive health and well-being functionality and are closely related to human thermo-physiological comfort. FIR exerts strong rotational and vibrational effects at the molecular level, with the potential to be biologically beneficial. In general, after absorbing either sunlight or heat from the human body, FIR textiles are designed to transform the energy into FIR radiation with a wavelength of 4–14 µm and pass it back to the human body. FIR textiles can meet increased demand for light, warm, comfortable, and healthy clothing. The main aim of this research is to describe the procedure for creating the FIR reflective textile layer as part of multilayer textile structures that have enhanced thermal protection. To develop the active FIR reflecting surface, the deposition of copper nanolayer on lightweight polyester nonwoven structure Milife, which has beneficial properties of low fiber diameters, good shape stability and comfort, was used. This FIR reflective layer was used as an active component of sandwiches composed of the outer layer, insulation layer, active layer, and inner layer. The suitable types of individual layers were based on their morphology, air permeability, spectral characteristics in the infra-red region, and thermal properties. Reflectivity, transmittance, and emissivity were evaluated from IR measurements. Human skin thermal behavior and the prediction of radiation from the human body dependent on ambient conditions and metabolic rate are also mentioned. The FIR reflective textile layer created, as part of multilayer textile structures, was observed to have enhanced thermal protection.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GM21-32510M" target="_blank" >GM21-32510M: Advanced structures for thermal insulation in extreme conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    19

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000709306400001

  • EID of the result in the Scopus database

    2-s2.0-85116020288