All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Warp knitted spacer microfiber biomass carrier for wastewater treatment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F23%3A00010583" target="_blank" >RIV/46747885:24410/23:00010583 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24620/23:00010583

  • Result on the web

    <a href="https://doi.org/10.1177/15280837231154533" target="_blank" >https://doi.org/10.1177/15280837231154533</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/15280837231154533" target="_blank" >10.1177/15280837231154533</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Warp knitted spacer microfiber biomass carrier for wastewater treatment

  • Original language description

    The development of novel biomass carriers is an option for increasing the efficiency of processes at wastewater treatment plants (WWTPs). Biomass carriers support the adhesion of specific bacteria and the subsequent biofilm formation. As part of this work, a new type of microfibrous biomass carrier with a unique sandwich structure was developed. Technologically, the structure of the biomass carrier is based on warp knitted spacer fabric created on a double-needle bar machine. Commercially available microfiber materials were used to achieve a large specific surface area (SSA) and internal porosity of the carrier to ensure high microorganism capture. A yarn combination was chosen to reach a final carrier density slightly lower than water to float in an aqueous environment. As the first, was developed and described a three-dimensional warp knitted microfiber biomass carrier. Next, were evaluated the properties of this carrier for post nitrification on WWTPs and compared with commercially available biomass carriers. Testing biofilm (using respirometry, real-time polymerase chain reaction, and next-generation sequencing) growing on the developed carrier in a post-nitrification laboratory reactor showed excellent adhesion, stability, and abundance of microorganisms. A high rate (more than 95%) of ammonia nitrogen removal was achieved in post-nitrification, and molecular genetics methods confirmed the high concentration of nitrifying bacteria in the biofilm. The developed three-dimensional microfiber biomass carriers have proven their functionality and can be considered an advance in biofilm processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybrid Materials for Hierarchical Structure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Industrial Textiles

  • ISSN

    1528-0837

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    001157276900004

  • EID of the result in the Scopus database

    2-s2.0-85179380673