All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterisation and photo-fatigue behaviour of UV-sensitive photochromic systems produced using electrospinning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F24%3A00012465" target="_blank" >RIV/46747885:24410/24:00012465 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1177/15280837241260068" target="_blank" >https://doi.org/10.1177/15280837241260068</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/15280837241260068" target="_blank" >10.1177/15280837241260068</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterisation and photo-fatigue behaviour of UV-sensitive photochromic systems produced using electrospinning

  • Original language description

    This research aimed to create a UV sensor using photochromic pigment in nonwoven form and analyse its fatigue resistance under continuous ultraviolet (UV) light. The photochromic polymeric matrices consist of a photochromic pigment, a polymer, and a photo stabilizer, which enhance the stability of the photochromic systems under light exposure. As a base matrix, we used polyvinyl butyral. Then, we added different amounts of the photochromic pigment 5-chloro-1,3,3-trimethylspiro [indoline-2,3′-(3H) naphtho (2,1-b) (1,4)-oxazine]. We produce photochromic nonwovens by electrospinning a polymeric matrix solution with varying pigment concentrations. The study aimed to create a UV sensor with photochromic nanofibers that are very sensitive to light. It also tested how well it can degrade under continuous UV radiation by looking at its photo fatigue resistance under constant UV irradiation for its final use as a UV sensor material. Using FTIR, CRM, SEM, and XRD techniques, this study investigates the physiochemical properties and photodegradation behaviour of photochromic nonwovens and writes a report on it. The photo-light stability of photochromic materials is a major problem concerning its external stimuli in different substrate forms. It also looks at how well they resist photo-chemically towards the UV light. The fatigue resistance measurements were carried out using a FOTOCHROM3 spectrophotometer under continuous UV irradiance using two different modes. This study evaluated and reported their photodegradation behaviour in cyclic and continuous UV irradiance modes. The tests showed that the prepared photochromic system works well with photostability and can go through more than 20 exposure cycles, each with 100 min of UV light and intensity equal to 1/3 of the sun’s rays on a clear day. Given the PVB applications in our daily lives, it can serve as a UV sensor in numerous industrial applications. Photochromic nanofibers possessing excellent photosensitivity hold immense promise as optical rewritable devices and colourimetric-based UV sensors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of industrial textiles

  • ISSN

    1528-0837

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    MAY

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    001276335600001

  • EID of the result in the Scopus database

    2-s2.0-85213567553