On a problem concerning k-subdomination numbers of graphs.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F03%3A00000027" target="_blank" >RIV/46747885:24510/03:00000027 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a problem concerning k-subdomination numbers of graphs.
Original language description
One of numerical invariants concerning domination in graphs is the $k$-subdomination number $gamma^{-11}_{kS}(G)$ of a graph $G$. A conjecture concerning it was expressed by J. H. Hattingh, namely that for any connected graph $G$ with $n$ vertices and any $k$ with $frac12 n < k leqq n$ the inequality $gamma^{-11}_{kS}(G) leqq2k - n$ holds. This paper presents a simple counterexample which disproves this conjecture. This counterexample is the graph of the three-dimensional cube and $k=5$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czech. Math. J.
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
4
Pages from-to
621-624
UT code for WoS article
—
EID of the result in the Scopus database
—