All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A remark on branch weights in countable trees

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F04%3A%230000231" target="_blank" >RIV/46747885:24510/04:#0000231 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A remark on branch weights in countable trees

  • Original language description

    Let T be a tree, let u be its vertex. The branch weight b(u) of u is the maximum number of vertices of a branch of T at u. The set of vertices u of T in which b(u) attains its minimum is the branch weight centroid B(T) of T. For finite trees the presentauthor proved that B(T) coincides with the median of T, therefore it consists of one vertex or of two adjacent vertices. In this paper we show that for infinite countable trees the situation is quite different.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATHEMATICA BOHEMICA

  • ISSN

    0862-7959

  • e-ISSN

  • Volume of the periodical

    129

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    3

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database