A priori error estimates of the discontinuous Galerkin method for the MEW equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F14%3A%230001133" target="_blank" >RIV/46747885:24510/14:#0001133 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4902463" target="_blank" >http://dx.doi.org/10.1063/1.4902463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4902463" target="_blank" >10.1063/1.4902463</a>
Alternative languages
Result language
angličtina
Original language name
A priori error estimates of the discontinuous Galerkin method for the MEW equation
Original language description
The subject matter is a priori error estimates of the discontinuous Galerkin (DG) method applied to the discretization of the modified equal width wave (MEW) equation, an important equation with a cubic nonlinearity describing a large number of physicalphenomena. We recall the numerical scheme, where the discretization is carried out with respect to space variables with the aid of method of lines at first, and then the time coordinate is treated by the backward Euler method. Furthermore, a suitable linearization preserves a linear algebraic problem at each time level. The attention is paid to the error analysis of the DG method with nonsymmetric stabilization of dispersive term and with the interior and boundary penalty. The asymptotic error estimateswith respect to the space-time grid size are derived and the numerical examples demonstrating the accuracy of the scheme are presented.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14), AIP Conference Proceedings 1631
ISBN
9780735412705
ISSN
0094-243X
e-ISSN
—
Number of pages
6
Pages from-to
93-98
Publisher name
AMER INST PHYSICS
Place of publication
Melville, NY, USA
Event location
Sozopol, Bulgaria
Event date
Jun 8, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000346058100014