Averaged regression quantiles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F14%3A%230001201" target="_blank" >RIV/46747885:24510/14:#0001201 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-319-02651-0_12" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-02651-0_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-02651-0" target="_blank" >10.1007/978-3-319-02651-0</a>
Alternative languages
Result language
angličtina
Original language name
Averaged regression quantiles
Original language description
The result showes that weighted averaged regression quantile in the linear regression model, with regressor components as weights, is monotone in (0, 1), and is asymptotically equivalent to the quantile of the location model. This relation remains true under the local heteroscedasticity of the model errors. As such, the averaged regression quantile provides various scale statistics, used for studentization and standardization in linear model, and an estimate of quantile density based on regression data.The properties are numerically illustrated.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP209%2F10%2F2045" target="_blank" >GAP209/10/2045: Homogeneous and non-homogeneous Poisson process models for extremes in climate change studies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Contemporary Developments in Statistical Theory
ISBN
9783319026503
Number of pages of the result
14
Pages from-to
203-216
Number of pages of the book
396
Publisher name
Springer
Place of publication
Switzerland
UT code for WoS chapter
—