Quantitative Properties of Quadratic Spline Wavelets in Higher Dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F16%3A00004029" target="_blank" >RIV/46747885:24510/16:00004029 - isvavai.cz</a>
Result on the web
<a href="http://dml.cz/handle/10338.dmlcz/702661" target="_blank" >http://dml.cz/handle/10338.dmlcz/702661</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantitative Properties of Quadratic Spline Wavelets in Higher Dimensions
Original language description
To use wavelets efficiently to solve numerically partial differential equations in higher dimensions, it is necessary to have at one's disposal suitable wavelet bases. Ideal wavelets should haveshort supports and vanishing moments, be smooth and known in closed form, and a corresponding wavelet basis should be well-conditioned. In our contribution, we compare condition numbers of different quadratic spline wavelet bases in dimensions d = 1, 2 and 3 on tensor product domains.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar
ISBN
978-80-85823-64-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
41-46
Publisher name
Institute of Mathematics AS CR
Place of publication
Prague
Event location
Dolní Maxov
Event date
Jan 1, 2014
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
000380564700005