Thermodynamic description of H2S–H2O–NaCl solutions at temperatures to 573 K and pressures to 40 MPa
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F16%3A00008834" target="_blank" >RIV/46747885:24510/16:00008834 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0009254116300067" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0009254116300067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemgeo.2016.01.006" target="_blank" >10.1016/j.chemgeo.2016.01.006</a>
Alternative languages
Result language
angličtina
Original language name
Thermodynamic description of H2S–H2O–NaCl solutions at temperatures to 573 K and pressures to 40 MPa
Original language description
Reliable experimental results were selected from the literature (using over 700 data) to develop a thermodynamic model for calculating the solubility of hydrogen sulfide (H2S) in pure water and in aqueous NaCl solutions between 283 and 573 K, 0.1–40 MPa and ms 0–6 mol·kg− 1. Thermodynamic properties of the pure components were calculated using highly accurate multiparametric equations of state for H2S (Lemmon and Span, 2006) and for H2O (Wagner and Pruss, 2002). Thermodynamic properties of H2S(aq) at infinite dilution were based on the Henry's law constants generated from the SOCW model (Sedlbauer et al., 2000) and reported by Majer et al. (2008). The determined activity coefficients of H2S in pure water and in NaCl solutions were treated using the Pitzer interaction model. The Pitzer parameters for H2S in binary and ternary solutions were newly determined while those for NaCl(aq) in the H2S-free system were adopted from the review of Archer (1992). The experimental solubilities selected for correlation are reproduced by the model with mean relative deviations of 5.2% and 6.1% for the H2S–H2O and for H2S–H2O–NaCl systems, respectively. These values are comparable to the experimental uncertainty of the solubility data. The new model allows a thermodynamically consistent description of numerous other properties of the liquid phase in the ternary H2S–H2O–NaCl system, including the activity coefficients of H2S and NaCl, the osmotic coefficients, the Setchenow constants, and the molar volume and density of the bulk liquid. These properties can be calculated for any H2S and NaCl concentrations up to halite saturation. The model is available as a computer code that is freely distributed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10500 - Earth and related environmental sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Geology
ISSN
0009-2541
e-ISSN
—
Volume of the periodical
424
Issue of the periodical within the volume
April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000370021200001
EID of the result in the Scopus database
2-s2.0-84957034350