Fractional Step Method for Wavelet Based Solution of Black-Scholes Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F17%3A00005131" target="_blank" >RIV/46747885:24510/17:00005131 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4968453" target="_blank" >http://dx.doi.org/10.1063/1.4968453</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4968453" target="_blank" >10.1063/1.4968453</a>
Alternative languages
Result language
angličtina
Original language name
Fractional Step Method for Wavelet Based Solution of Black-Scholes Equation
Original language description
The fractional step method is a method of approximation of evolution equations based on decomposition of the operators they contain. In recent years, operator splitting methods have been developed that enable an efficient and stable numerical solution of PDEs. This contribution is concerned with a wavelet based numerical solution of the Black-Scholes equation for pricing European options. We use an operator splitting method to split the arising system of equations into an symmetric part and into an unsymmetric part. Then, we apply the theta-scheme for the time discretization and wavelets for the space discretization. Consequently, the arising system of equations can be efficiently preconditioned using an wavelet based preconditioning. Numerical examples are given.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA16-09541S" target="_blank" >GA16-09541S: Robust numerical schemes for pricing of selected options under various market conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
9780735414532
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
AMER INST PHYSICS
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Sozopol, BULGARIA
Event date
Jan 1, 2016
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—