Galerkin method with new quadratic spline wavelets for integral and integro-differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F20%3A00007358" target="_blank" >RIV/46747885:24510/20:00007358 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0377042719303140" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719303140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2019.06.033" target="_blank" >10.1016/j.cam.2019.06.033</a>
Alternative languages
Result language
angličtina
Original language name
Galerkin method with new quadratic spline wavelets for integral and integro-differential equations
Original language description
The paper is concerned with the wavelet-Galerkin method for the numerical solution of Fredholm linear integral equations and second-order integro-differential equations. We propose a construction of a quadratic spline-wavelet basis on the unit interval, such that the wavelets have three vanishing moments and the shortest support among such wavelets. We prove that this basis is a Riesz basis in the space L-2(0, 1). We adapt the basis to homogeneous Dirichlet boundary conditions, and using a tensor product we construct a wavelet basis on the hyperrectangle. We use the wavelet-Galerkin method with the constructed bases for solving integral and integro-differential equations, and we show that the matrices arising from discretization have uniformly bounded condition numbers and that they can be approximated by sparse matrices. We present numerical examples and compare the results with the Galerkin method using other quadratic spline wavelet bases and other methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-09541S" target="_blank" >GA16-09541S: Robust numerical schemes for pricing of selected options under various market conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
363
Issue of the periodical within the volume
JAN 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
426-443
UT code for WoS article
000488995600027
EID of the result in the Scopus database
2-s2.0-85068379426