All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Galerkin method with new quadratic spline wavelets for integral and integro-differential equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F20%3A00007358" target="_blank" >RIV/46747885:24510/20:00007358 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0377042719303140" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719303140</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2019.06.033" target="_blank" >10.1016/j.cam.2019.06.033</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Galerkin method with new quadratic spline wavelets for integral and integro-differential equations

  • Original language description

    The paper is concerned with the wavelet-Galerkin method for the numerical solution of Fredholm linear integral equations and second-order integro-differential equations. We propose a construction of a quadratic spline-wavelet basis on the unit interval, such that the wavelets have three vanishing moments and the shortest support among such wavelets. We prove that this basis is a Riesz basis in the space L-2(0, 1). We adapt the basis to homogeneous Dirichlet boundary conditions, and using a tensor product we construct a wavelet basis on the hyperrectangle. We use the wavelet-Galerkin method with the constructed bases for solving integral and integro-differential equations, and we show that the matrices arising from discretization have uniformly bounded condition numbers and that they can be approximated by sparse matrices. We present numerical examples and compare the results with the Galerkin method using other quadratic spline wavelet bases and other methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-09541S" target="_blank" >GA16-09541S: Robust numerical schemes for pricing of selected options under various market conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

  • ISSN

    0377-0427

  • e-ISSN

  • Volume of the periodical

    363

  • Issue of the periodical within the volume

    JAN 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    18

  • Pages from-to

    426-443

  • UT code for WoS article

    000488995600027

  • EID of the result in the Scopus database

    2-s2.0-85068379426