All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F19%3A00006724" target="_blank" >RIV/46747885:24620/19:00006724 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/11/10/1571/htm" target="_blank" >https://www.mdpi.com/2073-4360/11/10/1571/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym11101571" target="_blank" >10.3390/polym11101571</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models

  • Original language description

    Despite wide industrial applications of Bis-GMA polymer, very few studies are available about the material classification, mechanical properties, and behavior of this material. In this study, the compressive behavior of Bis-GMA polymer was studied using different hyperelastic constitutive models through a hybrid experimental-computational process. Standard uniaxial compression tests were conducted to extract the mechanical behavior and structural response of the Bis-GMA polymer. A nano-indentation experiment was used to verify the compressive behavior of Bis-GMA polymer in the form of hyperelastic behavior. The finite element model and real-time simulation of the test incorporating different hyperelastic models were developed in comparison with the experimental finding to obtain the proper type of hyperelastic behavior of Bis-GMA polymer. The results indicate that a second-order polynomial hyperelastic model is the best fit to predict the behavior of Bis-GMA polymer. Next, the validated model was used to determine the true stress–strain curve of the Bis-GMA polymer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    <a href="/en/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000495382700040

  • EID of the result in the Scopus database

    2-s2.0-85073395136