Comparison of Mechanical and Barrier Properties of Al2O3/TiO2/ZrO2 Layers in Oxide–Hydroxyapatite Sandwich Composite Coatings Deposited by Sol–Gel Method on Ti6Al7Nb Alloy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F20%3A00007318" target="_blank" >RIV/46747885:24620/20:00007318 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1944/13/3/502" target="_blank" >https://www.mdpi.com/1996-1944/13/3/502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma13030502" target="_blank" >10.3390/ma13030502</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of Mechanical and Barrier Properties of Al2O3/TiO2/ZrO2 Layers in Oxide–Hydroxyapatite Sandwich Composite Coatings Deposited by Sol–Gel Method on Ti6Al7Nb Alloy
Original language description
In this study, coatings of different oxides (TiO2, Al2O3, ZrO2) and hydroxyapatite (HAp) as well as sandwich composite hydroxyapatite with an oxides sublayer (oxide HAp) were deposited on Ti6Al7Nb alloy using the sol–gel dip-coating method. The coatings were characterized in terms of morphology (optical microscope), surface topography (AFM), thickness (ellipsometry), and crystal structure (XRD/GIXRD). The mechanical properties of the coatings—hardness, Young’s modulus, and adhesion to the substrate—were examined using nanoindentation and scratch tests. The barrier properties of the coatings against the migration of aluminum ions were examined by measuring their concentration after soaking in Hank’s balanced salt solution (HBSS) with the use of optical emission spectrometry of inductively coupled plasma (ICPOES). It was found that all the oxide and HAp coatings reduced the permeation of Al ions from the Ti6Al7Nb alloy substrate. The best features revealed an Al2O3 layer that had excellent barrier properties and the best adhesion to the substrate. Al2O3 as a sublayer significantly improved the properties of the sandwich composite HAp coating.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
<a href="/en/project/LO1201" target="_blank" >LO1201: DEVELOPMENT OF THE INSTITUTE FOR NANOMATERIALS, ADVANCED TECHNOLOGIES AND INNOVATION</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials
ISSN
1996-1944
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
—
UT code for WoS article
000515503100009
EID of the result in the Scopus database
2-s2.0-85079633829