Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F21%3A00007860" target="_blank" >RIV/46747885:24620/21:00007860 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15640/21:73607328
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1383586620323534" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1383586620323534</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.seppur.2020.117880" target="_blank" >10.1016/j.seppur.2020.117880</a>
Alternative languages
Result language
angličtina
Original language name
Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate
Original language description
Although the catalytic activation of persulfate by iron is now common in environmental sciences, there are still several obstacles, including the non-selectiveness and high cost of the production of the iron catalyst. Therefore, it is essential to develop fast and easy methods for producing an iron catalyst that exhibits high surface area properties and rapid catalytic activation of persulfate. In the present work, a chitosan-poly(3–hydroxybutyrate) conjugate (CS-PHB) was used to improve the synthesis of nanoscale zero-valent iron (nZVI). CS-PHB possesses among others two functional groups (carbonyl and amine) that are desirable for catalytic applications, including heterogeneous persulfate activation. The produced CS-PHB-nZVI particles showed an extensive surface area (113 m2/g) and, at the same time, superior activity in heterogeneous catalysis, which was tested and compared with others persulfate activation methods (heat, Fe2 , commercial nZVI). The most suitable activation conditions for complete degradation of 0.15 mM of the model pollutant (methyl orange; MO) were determined (i.e., a pH of 7, persulfate and CS-PHB-nZVI concentrations of 2 mM and 50 mg/L, respectively). The role of temperature in MO oxidation was evaluated by the Arrhenius equation, and the results showed that the estimated activation energy (Ea) was 27.1 kJ/mol. The MO degradation may be attributed to the generation of SO4radical dot− in the system as a result of scavenging tests. A magnet can be used to easily separate the remaining catalyst. It is believed that due to it having several advantages over traditionally used nZVI, CS-PHB-nZVI may be successfully applied for catalytic remediation of contaminants that are reactive towards sulfate radicals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Separation and Purification Technology
ISSN
1383-5866
e-ISSN
—
Volume of the periodical
257
Issue of the periodical within the volume
February
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
—
UT code for WoS article
000596380900006
EID of the result in the Scopus database
2-s2.0-85092893268