All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modified Nanofibrous Filters with Durable Antibacterial Properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F21%3A00008750" target="_blank" >RIV/46747885:24620/21:00008750 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1420-3049/26/5/1255?type=check_update&version=2" target="_blank" >https://www.mdpi.com/1420-3049/26/5/1255?type=check_update&version=2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/molecules26051255" target="_blank" >10.3390/molecules26051255</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modified Nanofibrous Filters with Durable Antibacterial Properties

  • Original language description

    The main aims of the research were to produce efficient nanofibrous filters with long-term antibacterial properties and to confirm the functionality of samples under real filtration conditions. A polyurethane solution was modified by micro- or nanoparticles of copper oxide in order to juxtapose the aggregation tendency of particles depending on their size. Modified solutions were electrospun by the Nanospider technique. The roller spinning electrode with a needle surface and static wire electrode were used for the production of functionalized nanofibers. The antibacterial properties of the modified nanofibrous layers were studied under simulated conditions of water and air filtration. Particular attention was paid to the fixation mechanism of modifiers in the structure of filters. It was determined that the rotating electrode with the needle surface is more efficient for the spinning of composite solutions due to the continuous mixing and the avoidance of particle precipitation at the bottom of the bath with modified polyurethane. Moreover, it was possible to state that microparticles of copper oxide are more appropriate antimicrobial additives due to their weaker aggregation tendency but stronger fixation in the fibrous structure than nanoparticles. From the results, it is possible to conclude that nanofibers with well-studied durable antibacterial properties may be recommended as excellent materials for water and air filtration applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybrid Materials for Hierarchical Structure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>O - Projekt operacniho programu

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecules

  • ISSN

    1420-3049

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

  • UT code for WoS article

    000628410800001

  • EID of the result in the Scopus database

    2-s2.0-85102483164