All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Alkenyl succinic anhydride modified tree-gum kondagogu: A bio-based material with potential for food packaging

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F21%3A00008765" target="_blank" >RIV/46747885:24620/21:00008765 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0144861721005130" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0144861721005130</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.carbpol.2021.118126" target="_blank" >10.1016/j.carbpol.2021.118126</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Alkenyl succinic anhydride modified tree-gum kondagogu: A bio-based material with potential for food packaging

  • Original language description

    Tree gums are a class of abundantly available carbohydrate polymers that have not been explored thoroughly in film fabrication for food packaging. Films obtained from pristine tree gums are often brittle, hygroscopic, and lack mechanical strength. This study focuses on the chemical modification of gum kondagogu using long-chain alkenyl groups of dodecenyl succinic anhydride (DDSA), an esterifying agent that introduces a 12-carbon hydrophobic chain to the kondagogu structure. The esterification reaction was confirmed by 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The effect of nano-cellulose as an additive on various film properties was investigated. The developed films were characterized for their mechanical, morphological, optical, barrier, antibacterial, and biodegradable properties. The inclusion of long-chain carbon groups acted as internal plasticizers and resulted in an amorphous structure with better film-forming ability, improved hydrophobicity, and higher elongation at break values. The modified films exhibited antibacterial properties and excellent biodegradability under aerobic conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Carbohydrate Polymers

  • ISSN

    0144-8617

  • e-ISSN

  • Volume of the periodical

    266

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000655698800006

  • EID of the result in the Scopus database

    2-s2.0-85105035667