All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F21%3A00008814" target="_blank" >RIV/46747885:24620/21:00008814 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/13/11/1680" target="_blank" >https://www.mdpi.com/2073-4360/13/11/1680</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym13111680" target="_blank" >10.3390/polym13111680</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications

  • Original language description

    The food packaging industry explores economically viable, environmentally benign, and non-toxic packaging materials. Biopolymers, including chitosan (CH) and gelatin (GE), are considered a leading replacement for plastic packaging materials, with preferred packaging functionality and biodegradability. CH, GE, and different proportions of silver nanoparticles (AgNPs) are used to prepare novel packaging materials using a simple solution casting method. The functional and morphological characterization of the prepared films was carried out by using Fourier transform infrared spectroscopy (FTIR), UV–Visible spectroscopy, and scanning electron microscopy (SEM). The mechanical strength, solubility, water vapor transmission rate, swelling behavior, moisture retention capability, and biodegradability of composite films were evaluated. The addition of AgNPs to the polymer blend matrix improves the physicochemical and biological functioning of the matrix. Due to the cross-linking motion of AgNPs, it is found that the swelling degree, moisture retention capability, and water vapor transmission rate slightly decrease. The tensile strength of pure CH–GE films was 24.4 ± 0.03, and it increased to 25.8 ± 0.05 MPa upon the addition of 0.0075% of AgNPs. The real-time application of the films was tested by evaluating the shelf-life existence of carrot pieces covered with the composite films. The composite film containing AgNPs becomes effective in lowering bacterial contamination while comparing the plastic polyethylene films. In principle, the synthesized composite films possessed all the ideal characteristics of packaging material and were considered biodegradable and biocompatible food packaging material and an alternate option for petroleum-based plastics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/LTAUSA19091" target="_blank" >LTAUSA19091: Bio-based Porous 2D Membranes and 3D Sponges Based on Functionalized Tree Gum Polysaccharides and their Environmental Application</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000660527000001

  • EID of the result in the Scopus database

    2-s2.0-85107117447