All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Field application of glycerol to enhance reductive dechlorination of chlorinated ethenes and its impact on microbial community

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F22%3A00010019" target="_blank" >RIV/46747885:24620/22:00010019 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.chemosphere.2022.136640" target="_blank" >https://doi.org/10.1016/j.chemosphere.2022.136640</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2022.136640" target="_blank" >10.1016/j.chemosphere.2022.136640</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Field application of glycerol to enhance reductive dechlorination of chlorinated ethenes and its impact on microbial community

  • Original language description

    Chlorinated ethenes (CEs) are common and persistent contaminants of soil and groundwater. Their degradation is mostly driven by a process of bacterial reductive dechlorination (also called organohalide respiration) in anaerobic conditions. This study summarizes the outcomes of the long-term in-situ application of glycerol for the enhanced reductive dechlorination of CEs on a highly contaminated site. Glycerol injection resulted in an almost immediate increase in the abundance of fermentative Firmicutes, which produce essential sources of carbon (acetate) and electrons (H2) for organohalide-respiring bacteria (OHRB) and change groundwater conditions to be suitable for OHRB growth. The decreased redox potential of groundwater promoted also the proliferation of sulfate-reducing bacteria, which compete for electron donors with OHRB but at the same time support their growth by producing essential corrinoids and acetate. A considerable increase in the abundance of OHRB Dehalococcoides, concurrently with vinyl chloride (VC) reductase gene levels, was revealed by real time polymerase chain reaction (qPCR) method. Consistent with the shifts in bacterial populations, the concentrations of pollutants tetrachloroethylene and trichloroethylene decreased during the monitoring period, with rising levels of cis-1,2-dichloroethylene, VC, and most importantly, the final CE degradation products: ethene and ethane. Our study implies the importance of syntrophic bacterial interactions for successful and complete CE degradation and evaluates glycerol as convenient substrate to enhance reductive dechlorination and as an effective source of electrons for OHRB.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemosphere

  • ISSN

    0045-6535

  • e-ISSN

  • Volume of the periodical

    309

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000898426300002

  • EID of the result in the Scopus database

    2-s2.0-85139338051