All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00010077" target="_blank" >RIV/46747885:24620/23:00010077 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1385894722050355" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894722050355</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2022.139556" target="_blank" >10.1016/j.cej.2022.139556</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism

  • Original language description

    In this work, CoFe2O4-reduced graphene oxide (CFO-rGO) nanocomposite was synthesized to activate peroxymonosulfate (PMS) under UVA-LED irradiation. Bisphenol A (BPA) was selected as an emerging pollutant to evaluate the performance of the UVA-LED/CFO-rGO/PMS system. CFO-rGO was characterized by several advanced methods including XRD, FTIR, FESEM, EDX-mapping, TEM, XPS, BET-BJH, Raman spectrometry, VSM, PL, and EIS analyses. The operating factors, the determination of reactive species, and the mechanism were studied and discussed. During 30 min reaction time, more than 99% of BPA was removed by 150 mg/L PMS and 400 mg/L CFO-rGO under mild conditions (pH = 3–9). Bicarbonate ions could inhibit the BPA degradation by scavenging the free radicals. The trapping experiments exhibited that sulfate () and hydroxyl (•OH) radicals were prevailing agents for BPA degradation. Humic acid (HA) and sodium dodecyl sulfate (SDS) had a hindering effect on BPA degradation. CFO-rGO showed a high potential for recyclability up to six cycles. Moreover, the leaching of metals was approximately null for CFO-rGO, indicating that the current nanocomposite is highly stable. We also examined UVA-LED/CFO-rGO/PMS system on other pollutants, as well as real conditions. The results showed high efficiency for all conditions. The UVA-LED/CFO-rGO/PMS process could mineralize 67% of BPA during 80 min reaction time. Intermediates of BPA degradation were identified and their toxicity was also estimated. This work enlightened the ferrite catalysts‘ importance in activating PMS under UVA-LED irradiation for emerging pollutants wastewater remediation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

  • Volume of the periodical

    453

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000876980700005

  • EID of the result in the Scopus database

    2-s2.0-85140059857