All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermal and optical properties of P3HT:PC70BM:ZnO nanoparticles composite films

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00011635" target="_blank" >RIV/46747885:24620/23:00011635 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-023-47134-4#citeas" target="_blank" >https://www.nature.com/articles/s41598-023-47134-4#citeas</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-47134-4" target="_blank" >10.1038/s41598-023-47134-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermal and optical properties of P3HT:PC70BM:ZnO nanoparticles composite films

  • Original language description

    The results of studies on the influence of zinc oxide nanoparticles (ZnO-NPs) on the structural, thermal and optical properties of thin films of mixtures of phenyl-C71-butyric acid methyl ester (PCBM) with poly[3-hexylthiophene] (P3HT) of various molecular weights are described in this article. The structural properties of the layers of: polymers, mixtures of polymers with fullerenes and their composites with ZnO-NPs were investigated using X-ray diffraction. Whereas their glass transition temperature and optical parameters have been determined by temperature-dependent spectroscopic ellipsometry. The presence of ZnO-NPs was also visible in the images of the surface of the composite layers obtained using scanning electron microscopy. These blends and composite films have also been used as the active layer in bulk heterojunction photovoltaic structures. The molecular weight of P3HT (Mw = 65.2; 54.2 and 34.1 kDa) and the addition of nanoparticles affected the power conversion efficiency (PCE) of the obtained solar cells. The determined PCE was the highest for the device prepared from the blend of P3HT:PCBM with the polymer of the lowest molecular weight. However, solar cells with ZnO-NPs present in their active layer had lower efficiency, although the open-circuit voltage and fill factor of almost all devices had the same values whether they contained ZnO-NPs or not. It is worth noting that thermal studies carried out using temperature-dependent ellipsometry showed a significant effect of the presence of ZnO-NPs on the value of the glass transition temperature, which was higher for composite films than for films made of a polymer-fullerene blend alone.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10700 - Other natural sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    001142781100759

  • EID of the result in the Scopus database

    2-s2.0-85181246055