All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical simulation of inviscid compressible fluid flow around moving bodies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47718684%3A_____%2F15%3A%230000628" target="_blank" >RIV/47718684:_____/15:#0000628 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical simulation of inviscid compressible fluid flow around moving bodies

  • Original language description

    The article presents numerical code which was developed for solution of inviscid compressible fluid flow in domains with deforming boundaries. This computational method for the numerical solution of the non-linear system of Euler equations in time-dependent domains was designed as the first step of solution of fluid-structure interaction problem. Arbitrary Lagrangian - Eulerian (ALE) description of continuum, combining Eulerian and Lagrangian approach, was used to describe the inviscid fluid flow in time-dependent domain. The spatial discretization was provided by finite volume method adapted for triangular computational grids. Inviscid fluxes were discretized by the Rusanov flux scheme and Van Leer flux splitting scheme. The computational code was validated using a case of inviscid fluid flow around vibrating airfoil NACA 0012 which was experimentally investigated by AGARD group in 1982. Boundary conditions and simulation parameters were set according to the conditions of experimental measurement and the rotation angle of the body was defined by a time-dependent function. The numerical results are compared with experimental data and results of other authors. The algorithm for the mesh deformation is presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BK - Liquid mechanics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TE01020068" target="_blank" >TE01020068: Centre of research and experimental development of reliable energy production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Manufacturing Technology

  • ISSN

    1213-2489

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    4

  • Pages from-to

    854-857

  • UT code for WoS article

  • EID of the result in the Scopus database