All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-destructive method for detecting damage of thermally sprayed samples under high-cycle loading

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47718684%3A_____%2F24%3A10002305" target="_blank" >RIV/47718684:_____/24:10002305 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-destructive method for detecting damage of thermally sprayed samples under high-cycle loading

  • Original language description

    The aim of the work was to design and validate a method of non-destructive testing of 3D printed thermal sprayed steel specimens subjected to vibration loading with a number of cycles greater than106. PCRT method was used as a starting point (Process Compensated Resonance Testing), which is used to test large sets of identical samples. PCRT is an advanced testing technique that uses acoustic resonance to determine variations in properties without destroying the sample. Due to its ability to provide accurate and repeatable results, this method is increasingly preferred in multiple industries, including aerospace, automotive, and composites manufacturing.In this report, we focus on evaluating the performance and reliability of the Process Compensated Resonance Testing (PCRT) method in testing 3D printed samples with and without thermal sprayed layer.The validation of the method was carried out in the following steps:I. Determination of the initial state of the sample (eigenfrequency distribution, Chapter 1),II. Cyclic bending loading of the specimen (Chapter 3),III. Determination of the sample state after loading (natural frequency distribution, Chapter 1). If the data comparison (Chapter 2) of Steps I and III does not indicate sample damage, proceed to Step II, otherwise the sample is sent to the materials laboratory for confirmation of sample condition.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/TH75020003" target="_blank" >TH75020003: Development of “3D print-thermal spray” systems for dynamically and cyclically loaded applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.