All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation and Prediction of Wages Based on Granular Neural Network

Result description

The article offers detailed computational algorithm used in this type of neural networks, extends their applications to fit and predict the data of economic time series, conducts experiments and indicates the gain of granular neural networks, specifically conducting experimentation using the classical (statistical) or econometric methods and conventional/soft RBF neural networks. Results are analysed and opportunities for future research are suggested.

Keywords

Probabilistic time-seriesClassic and soft RBF networkCloud modelsGranular computing

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation and Prediction of Wages Based on Granular Neural Network

  • Original language description

    The article offers detailed computational algorithm used in this type of neural networks, extends their applications to fit and predict the data of economic time series, conducts experiments and indicates the gain of granular neural networks, specifically conducting experimentation using the classical (statistical) or econometric methods and conventional/soft RBF neural networks. Results are analysed and opportunities for future research are suggested.

  • Czech name

    Aproximace a predikce mezd založené na granulární euronové sítí

  • Czech description

    Článek poskytuje detailní výpočtový algoritmus navrhnutý pro aproximaci a predikci časových řad prostřednictvím granulační RBF sítě. Je poskytnutá popsaná aplikace aproximace a predikce sítě na ekonomické časové řade. Současně je identifikován přínos vyvinuté metody oproti klasický statistickým, ekonometrickým modelům a modelům založeným a klasických (perceptronových) sítích. V závěru je načrtnut možný směr dalšího výzkumu v této oblasti.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    AH - Economics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Rough Sets and Knowledge Technology. Third International Conference, RSKT 2008, Chengdu, China, May 2008, Proceedings

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    LNAI 5009

  • Issue of the periodical within the volume

    2008

  • Country of publishing house

    CN - CHINA

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

AH - Economics

Year of implementation

2009