Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000054" target="_blank" >RIV/47813059:19240/17:A0000054 - isvavai.cz</a>
Result on the web
<a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.064004" target="_blank" >https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.064004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.96.064004" target="_blank" >10.1103/PhysRevD.96.064004</a>
Alternative languages
Result language
angličtina
Original language name
Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
Original language description
We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996)] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
96
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
'064004-1'-'064004-8'
UT code for WoS article
000409259700004
EID of the result in the Scopus database
2-s2.0-85031714553