All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Epicyclic Oscillations in the Hartle-Thorne External Geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F19%3AA0000427" target="_blank" >RIV/47813059:19240/19:A0000427 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ab1b4c" target="_blank" >https://iopscience.iop.org/article/10.3847/1538-4357/ab1b4c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ab1b4c" target="_blank" >10.3847/1538-4357/ab1b4c</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Epicyclic Oscillations in the Hartle-Thorne External Geometry

  • Original language description

    The external Hartle-Thorne geometry, which describes the spacetime outside a slowly rotating compact star, is characterized by the gravitational mass M, angular momentum J, and quadrupole moment Q of the star and gives a convenient description, which, for the rotation frequencies of more than 95% of known pulsars, is sufficiently accurate for most purposes. We focus here on the motion of particles in these spacetimes, presenting a detailed systematic analysis of the frequency properties of radial and vertical epicyclic motion and of orbital motion. Our investigation is motivated by X-ray observations of binary systems containing a rotating neutron star that is accreting matter from its binary companion. In these systems, twin high-frequency quasi-periodic oscillations (QPOs) are sometimes observed with a frequency ratio approaching 3:2 or 5:4, and these may be explained by models involving the orbital and epicyclic frequencies of quasi-circular geodesic motion. In our analysis, we use realistic equations of state for the stellar matter and proceed in a self-consistent way, following the Hartle-Thorne approach in calculating both the corresponding values of Q, M, and J for the stellar model and the properties of the surrounding spacetime. Our results are then applied to a range of geodetical models for QPOs. A key feature of our study is that it implements the recently discovered universal relations among neutron-star parameters so that the results can be directly used for models with different masses M, radii R, and rotational frequencies f_(rot).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Volume of the periodical

    877

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    „66-1“-„66-17“

  • UT code for WoS article

    000469433800002

  • EID of the result in the Scopus database

    2-s2.0-85068727594