All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Puffy Accretion Disks: Sub-Eddington, Optically Thick, and Stable

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F19%3AA0000443" target="_blank" >RIV/47813059:19240/19:A0000443 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.3847/2041-8213/ab48f5" target="_blank" >https://iopscience.iop.org/article/10.3847/2041-8213/ab48f5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/2041-8213/ab48f5" target="_blank" >10.3847/2041-8213/ab48f5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Puffy Accretion Disks: Sub-Eddington, Optically Thick, and Stable

  • Original language description

    We report on a new class of solutions of black hole accretion disks that we have found through three-dimensional, global, radiative magnetohydrodynamic simulations in general relativity. It combines features of the canonical thin, slim, and thick disk models but differs in crucial respects from each of them. We expect these new solutions to provide a more realistic description of black hole disks than the slim disk model. We are presenting a disk solution for a nonspinning black hole at a sub-Eddington mass accretion rate, Mdot = 0.6 Mdot_Edd. By the density scale-height measure the disk appears to be thin, having a high density core near the equatorial plane of height h_rho ~ 0.1 r, but most of the inflow occurs through a highly advective, turbulent, optically thick, Keplerian region that sandwiches the core and has a substantial geometrical thickness comparable to the radius, H ~ r. The accreting fluid is supported above the midplane in large part by the magnetic field, with the gas and radiation to magnetic pressure ratio beta ~ 1, this makes the disk thermally stable, even though the radiation pressure strongly dominates over gas pressure. A significant part of the radiation emerging from the disk is captured by the black hole, so the disk is less luminous than a thin disk would be at the same accretion rate.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal Letters

  • ISSN

    2041-8205

  • e-ISSN

    2041-8213

  • Volume of the periodical

    884

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    6

  • Pages from-to

    „L37-1“-„L37-6“

  • UT code for WoS article

    000516538200010

  • EID of the result in the Scopus database

    2-s2.0-85075292838