Puffy Accretion Disks: Sub-Eddington, Optically Thick, and Stable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F19%3AA0000443" target="_blank" >RIV/47813059:19240/19:A0000443 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.3847/2041-8213/ab48f5" target="_blank" >https://iopscience.iop.org/article/10.3847/2041-8213/ab48f5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/2041-8213/ab48f5" target="_blank" >10.3847/2041-8213/ab48f5</a>
Alternative languages
Result language
angličtina
Original language name
Puffy Accretion Disks: Sub-Eddington, Optically Thick, and Stable
Original language description
We report on a new class of solutions of black hole accretion disks that we have found through three-dimensional, global, radiative magnetohydrodynamic simulations in general relativity. It combines features of the canonical thin, slim, and thick disk models but differs in crucial respects from each of them. We expect these new solutions to provide a more realistic description of black hole disks than the slim disk model. We are presenting a disk solution for a nonspinning black hole at a sub-Eddington mass accretion rate, Mdot = 0.6 Mdot_Edd. By the density scale-height measure the disk appears to be thin, having a high density core near the equatorial plane of height h_rho ~ 0.1 r, but most of the inflow occurs through a highly advective, turbulent, optically thick, Keplerian region that sandwiches the core and has a substantial geometrical thickness comparable to the radius, H ~ r. The accreting fluid is supported above the midplane in large part by the magnetic field, with the gas and radiation to magnetic pressure ratio beta ~ 1, this makes the disk thermally stable, even though the radiation pressure strongly dominates over gas pressure. A significant part of the radiation emerging from the disk is captured by the black hole, so the disk is less luminous than a thin disk would be at the same accretion rate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astrophysical Journal Letters
ISSN
2041-8205
e-ISSN
2041-8213
Volume of the periodical
884
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
„L37-1“-„L37-6“
UT code for WoS article
000516538200010
EID of the result in the Scopus database
2-s2.0-85075292838