All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-healing turing-universal computation in morphogenetic systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F21%3AA0000880" target="_blank" >RIV/47813059:19240/21:A0000880 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007/s11047-021-09860-4.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11047-021-09860-4.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11047-021-09860-4" target="_blank" >10.1007/s11047-021-09860-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-healing turing-universal computation in morphogenetic systems

  • Original language description

    A morphogenetic system (M system) is an abstract computational model inspired by characteristic properties of morphogenetic phenomena such as controlled growth, self-reproduction, homeostasis and self-healing in living systems. Besides selected principles of membrane computing, M systems also rely on algorithmic self-assembly of abstract tiles unfolding in a 3D (or generally, dD) space. Explicit spatial arrangements for interaction among an M system’s components are crucial for its function. From a computational viewpoint, key features of M systems include their computational universality and their efficiency to solve difficult problems. Both computational universality (in the Turing sense) and self-healing properties (in the sense of the algorithmic tile assembly model) have been demonstrated for different M systems in prior publications. Here, we demonstrate that both of these properties can be simultaneously achieved in a single M system. We present a Turing universal string acceptor M system that also exhibits self-healing capabilities of degree 1. This result is rather surprising since Turing machines are usually very sensitive to minor damage to their internal structure. The result thus sheds light on the power and importance of geometric and spatial arrangements for the reliability and robustness of a computational system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Natural Computing

  • ISSN

    1567-7818

  • e-ISSN

    1572-9796

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    739-750

  • UT code for WoS article

    000676071800003

  • EID of the result in the Scopus database

    2-s2.0-85111121251