Duality in fuzzy linear programming with possibility and necessity relations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F06%3A00000010" target="_blank" >RIV/47813059:19520/06:00000010 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27510/06:00017454
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Duality in fuzzy linear programming with possibility and necessity relations
Original language description
In this paper we introduce a class of fuzzy linear programming problems and define the concepts of feasible and alpha-efficient solutions - the necessary tools for dealing with such problems. In this way we show that the class of crisp (classical) LP problems can be embedded into the class of FLP ones. Moreover, for FLP problems we define the concept of duality and prove the weak and strong duality theorems with necessity and possibility inequality relations.
Czech name
Dualita ve fuzzy lineárním programování s possibility a necessity relacemi
Czech description
Článek pojednává o problému duality ve fuzzy lineárním programování s possibility a necessity relacemi.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F06%2F0431" target="_blank" >GA402/06/0431: Research and further further development of multi-criteria decision methods and its application to the public sector</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
157
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
1283-1302
UT code for WoS article
—
EID of the result in the Scopus database
—