Duality in fuzzy multiple objective linear programming with possibility and necessity relations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F06%3A00000011" target="_blank" >RIV/47813059:19520/06:00000011 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Duality in fuzzy multiple objective linear programming with possibility and necessity relations
Original language description
In this paper a class of fuzzy multiple objective linear programming (FMLP) problems based on fuzzy relations is introduced, the concepts of feasible and alpha-efficient solutions are defined. It is shown that the class of crisp (classical) LP problems and interval LP problems can be embedded into the class of FMLP ones. Moreover, for FMLP problems a new concept of duality is introduced and the weak and strong duality theorems are derived.
Czech name
Dualita ve fuzzy vícekriteriálním lineárním programování s possibility a necessity relacemi
Czech description
Kapitola se zabývá problémy duality ve fuzzy vícekriteriálním programování s possibility a necessity relacemi.
Classification
Type
C - Chapter in a specialist book
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F06%2F0431" target="_blank" >GA402/06/0431: Research and further further development of multi-criteria decision methods and its application to the public sector</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Multiple Cruteria Decision making
ISBN
83-7246-843-5
Number of pages of the result
24
Pages from-to
201-224
Number of pages of the book
—
Publisher name
Publisher of The Karol Adamiecki University of Economics
Place of publication
Katowice
UT code for WoS chapter
—