A Consensual Coherent Priority Vector of Pairwise Comparison Matrices in Group Decision-Making
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F23%3AA0000365" target="_blank" >RIV/47813059:19520/23:A0000365 - isvavai.cz</a>
Result on the web
<a href="https://www.researchgate.net/publication/374698114_A_Consensual_Coherent_Priority_Vector_of_Pairwise_Comparison_Matrices_in_Group_Decision-Making" target="_blank" >https://www.researchgate.net/publication/374698114_A_Consensual_Coherent_Priority_Vector_of_Pairwise_Comparison_Matrices_in_Group_Decision-Making</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Consensual Coherent Priority Vector of Pairwise Comparison Matrices in Group Decision-Making
Original language description
The Analytic Hierarchy Process (AHP) is a method proposed to solve complex multi-criteria decision-making problems. Pairwise comparison methods are often used in AHP to derive the priorities of the successors of an element in the hierarchy. In this paper, we are concerned with group decision-making; that is, given n objects, such as criteria and/or variants, let m decision makers evaluate the n objects (pairwise) with respect to a criterion. The task is then to find a consensual priority vector of the m given n×n reciprocal pairwise comparison matrices. Recalling several desirable properties of the priority vector – consistency, intensity, and coherence – we consider the weakest one of the three, i.e. coherence, in the rest of the paper. In other words, given m coherent priority vectors, each provided by a decision maker of the group, the purpose is to find a single consensual priority vector of the group. To cope with this task, we propose a grade to measure the consensuality of a priority vector. We thus obtain an optimization problem, whose solution yields an optimal consensual ranking of the n given objects.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA21-03085S" target="_blank" >GA21-03085S: Supporting Decision Processes with Pairwise Comparisons and Data Mining</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 41st International Conference on Mathematical Methods in Economics: September 13–15, 2023: Prague, Czech Republic
ISBN
9788011041328
ISSN
2788-3965
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
Czech Society for Operations Research
Place of publication
Prague
Event location
Prague
Event date
Sep 13, 2023
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—