All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximal superintegrability of Benenti systems

Result description

For a class of Hamiltonian systems, naturally arising in the modern theory of separation of variables, we establish their maximal superintegrability by explicitly constructing the additional integrals of motion.

Keywords

integrable Hamiltonian systemsBenenti systemsmaximal superintegrabilityintegrals of motion

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximal superintegrability of Benenti systems

  • Original language description

    For a class of Hamiltonian systems, naturally arising in the modern theory of separation of variables, we establish their maximal superintegrability by explicitly constructing the additional integrals of motion.

  • Czech name

    Maximální superintegrabilita Benentiho systémů

  • Czech description

    Pro třidu Hamiltonových systémů, které přirozeně vznikají v moderní teorií separace proměnných, určujeme jejich maximální superintegrabilitu pomocí explicitní konstrukce dodatečných integralů pohybu.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics A: Mathematical and General

  • ISSN

    0305-4470

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    5

  • Pages from-to

    "L1"-"L5"

  • UT code for WoS article

  • EID of the result in the Scopus database

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2005