Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F10%3A%230000277" target="_blank" >RIV/47813059:19610/10:#0000277 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation
Original language description
In this paper we classify Weingarten surfaces integrable in the sense of soliton theory. The criterion is that the associated Gauss equation possesses an sl(2)-valued zero curvature representation with a nonremovable parameter. Under certain restrictionson the jet order, the answer is given by a third order ordinary differential equation to govern the functional dependence of the principal curvatures. Employing the scaling and translation (offsetting) symmetry, we give a general solution of the governing equation in terms of elliptic integrals. We show that the instances when the elliptic integrals degenerate to elementary functions were known to nineteenth-century geometers. Finally, we characterize the associated normal congruences.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F07%2FP224" target="_blank" >GP201/07/P224: Symbolic computations in the theory of partial differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
—
UT code for WoS article
000281377600013
EID of the result in the Scopus database
—