Chaos on one-dimensional compact metric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F12%3A%230000355" target="_blank" >RIV/47813059:19610/12:#0000355 - isvavai.cz</a>
Result on the web
<a href="http://www.worldscientific.com/doi/abs/10.1142/S0218127412502598" target="_blank" >http://www.worldscientific.com/doi/abs/10.1142/S0218127412502598</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218127412502598" target="_blank" >10.1142/S0218127412502598</a>
Alternative languages
Result language
angličtina
Original language name
Chaos on one-dimensional compact metric spaces
Original language description
We consider various kinds of chaotic behavior of continuous maps on compact metric spaces: the positivity of topological entropy, the existence of a horseshoe, the existence of a homoclinic trajectory (or perhaps, an eventually periodic homoclinic trajectory), three levels of Li Yorke chaos, three levels of omega-chaos and distributional chaos of type 1. The relations between these properties are known when the space is an interval. We survey the known results in the case of trees, graphs and dendrites.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0887" target="_blank" >GAP201/10/0887: Discrete dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Bifurcation and Chaos
ISSN
0218-1274
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
10
Country of publishing house
SG - SINGAPORE
Number of pages
10
Pages from-to
"1250259-1"-"1250259-10"
UT code for WoS article
000310881300031
EID of the result in the Scopus database
—