Strange chaotic triangular maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F12%3A%230000361" target="_blank" >RIV/47813059:19610/12:#0000361 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S096007791200121X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S096007791200121X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2012.05.008" target="_blank" >10.1016/j.chaos.2012.05.008</a>
Alternative languages
Result language
angličtina
Original language name
Strange chaotic triangular maps
Original language description
We show that in the class T of the triangular maps (x, y) bar right arrow (f(x), g(x)(y)) of the square there is a map with zero topological entropy which is Li-Yorke chaotic on a minimal set, but not distributionally chaotic DC2. This result answers anopen question concerning classification of maps in T with zero topological entropy, and contributes to an old problem formulated by Sharkovsky.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0887" target="_blank" >GAP201/10/0887: Discrete dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chaos, Solitons & Fractals
ISSN
0960-0779
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
9-10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
4
Pages from-to
1188-1191
UT code for WoS article
000309315800013
EID of the result in the Scopus database
—