Another integrable case in two-dimensional plasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F13%3A%230000365" target="_blank" >RIV/47813059:19610/13:#0000365 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/1751-8121/46/4/045203/" target="_blank" >http://iopscience.iop.org/1751-8121/46/4/045203/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/46/4/045203" target="_blank" >10.1088/1751-8113/46/4/045203</a>
Alternative languages
Result language
angličtina
Original language name
Another integrable case in two-dimensional plasticity
Original language description
In this paper, we continue the investigation of the constant astigmatism equation z(yy) + (1/z)(xx) + 2 = 0. We newly interpret its solutions as describing spherical orthogonal equiareal patterns, which links them to principal stress lines under the Tresca yield condition on the sphere. By extending the classical Bianchi superposition principle for the sine-Gordon equation, we show how to generate an arbitrary number of solutions by algebraic manipulations. Finally, we show that slip line fields on thesphere are determined by the sine-Gordon equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
"045203-1"-"045203-15"
UT code for WoS article
000313564300007
EID of the result in the Scopus database
—