Strong and weak distributional chaos
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F13%3A%230000368" target="_blank" >RIV/47813059:19610/13:#0000368 - isvavai.cz</a>
Result on the web
<a href="http://www.tandfonline.com/doi/abs/10.1080/10236198.2011.630316" target="_blank" >http://www.tandfonline.com/doi/abs/10.1080/10236198.2011.630316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2011.630316" target="_blank" >10.1080/10236198.2011.630316</a>
Alternative languages
Result language
angličtina
Original language name
Strong and weak distributional chaos
Original language description
The original notion of distributional chaos introduced in 1994 by Schweizer and Smital for continuous maps of the interval was later generalized to arbitrary compact metric space, and three types, DC1-DC3, are now considered. However, most of the resultsconcern the case when the scrambled set consists of two points, DC21-DC23. In this paper, we consider stronger versions of distributional chaos, DCu1-DCu3, where uncountable scrambled set is required. We show, among others, that these types and DC21-DC23 are mutually non-equivalent, even in the class of triangular maps of the square.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0887" target="_blank" >GAP201/10/0887: Discrete dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
114-123
UT code for WoS article
000313639600008
EID of the result in the Scopus database
—