On Lipschitz solutions of the constant astigmatism equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F14%3A%230000452" target="_blank" >RIV/47813059:19610/14:#0000452 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0393044014001090" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0393044014001090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2014.05.020" target="_blank" >10.1016/j.geomphys.2014.05.020</a>
Alternative languages
Result language
angličtina
Original language name
On Lipschitz solutions of the constant astigmatism equation
Original language description
We show that the solutions of the constant astigmatism equation that correspond to a class of surfaces found by Lipschitz in 1887, exactly match the Lie symmetry invariant solutions and constitute a four-dimensional manifold. The two-dimensional orbit space with respect to the Lie symmetry group is described. Our approach relies on the link between constant astigmatism surfaces and orthogonal equiareal patterns. The counterpart sine-Gordon solutions are shown to be Lie symmetry invariant as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
November 2014
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
88-98
UT code for WoS article
000342540500010
EID of the result in the Scopus database
—