Integrability of S-deformable surfaces: Conservation laws, Hamiltonian structures and more
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F15%3A%230000502" target="_blank" >RIV/47813059:19610/15:#0000502 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S039304401500162X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S039304401500162X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2015.07.016" target="_blank" >10.1016/j.geomphys.2015.07.016</a>
Alternative languages
Result language
angličtina
Original language name
Integrability of S-deformable surfaces: Conservation laws, Hamiltonian structures and more
Original language description
We present infinitely many nonlocal conservation laws, a pair of compatible local Hamiltonian structures and a recursion operator for the equations describing surfaces in three-dimensional space that admit nontrivial deformations which preserve both principal directions and principal curvatures (or, equivalently, the shape operator).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
97
Issue of the periodical within the volume
November 2015
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
266-278
UT code for WoS article
000361401800020
EID of the result in the Scopus database
2-s2.0-84938902365