Asymptotic analysis via calculus of hypergeometric functions
Result description
The generalized hypergeometric function satisfies many identities or "transforms" which can be used to establish their asymptotic behavior for large argument and even, in some cases, for large parameters. We will show that using just three transforms alone, valid for a large class of multivariate hypergeometric functions, we can use a similar "calculus" to compute asymptotic expansions even in higher dimensions.
Keywords
asymptotic analysisspecial functionshypergeometric functions
The result's identifiers
Result code in IS VaVaI
Result on the web
http://www.sciencedirect.com/science/article/pii/S0022247X15008045
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Asymptotic analysis via calculus of hypergeometric functions
Original language description
The generalized hypergeometric function satisfies many identities or "transforms" which can be used to establish their asymptotic behavior for large argument and even, in some cases, for large parameters. We will show that using just three transforms alone, valid for a large class of multivariate hypergeometric functions, we can use a similar "calculus" to compute asymptotic expansions even in higher dimensions.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
433
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
1790-1820
UT code for WoS article
000362048700059
EID of the result in the Scopus database
2-s2.0-84942191066
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2016