All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Meta-Symplectic Geometry of 3rd Order Monge-Ampere Equations and their Characteristics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F16%3AN0000215" target="_blank" >RIV/47813059:19610/16:N0000215 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.emis.de/journals/SIGMA/2016/032/" target="_blank" >http://www.emis.de/journals/SIGMA/2016/032/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3842/SIGMA.2016.032" target="_blank" >10.3842/SIGMA.2016.032</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Meta-Symplectic Geometry of 3rd Order Monge-Ampere Equations and their Characteristics

  • Original language description

    This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampere equations, by using the so-called "meta-symplectic structure" associated with the 8D prolongation M-(1) of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampere equation in terms of a (class of) differential two-form on M-(1). In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampere equations, herewith called of Goursat type.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

  • ISSN

    1815-0659

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    March 2016

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    35

  • Pages from-to

    1-35

  • UT code for WoS article

    000374457100001

  • EID of the result in the Scopus database

    2-s2.0-84962040811