Meta-Symplectic Geometry of 3rd Order Monge-Ampere Equations and their Characteristics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F16%3AN0000215" target="_blank" >RIV/47813059:19610/16:N0000215 - isvavai.cz</a>
Result on the web
<a href="http://www.emis.de/journals/SIGMA/2016/032/" target="_blank" >http://www.emis.de/journals/SIGMA/2016/032/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2016.032" target="_blank" >10.3842/SIGMA.2016.032</a>
Alternative languages
Result language
angličtina
Original language name
Meta-Symplectic Geometry of 3rd Order Monge-Ampere Equations and their Characteristics
Original language description
This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampere equations, by using the so-called "meta-symplectic structure" associated with the 8D prolongation M-(1) of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampere equation in terms of a (class of) differential two-form on M-(1). In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampere equations, herewith called of Goursat type.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
March 2016
Country of publishing house
UA - UKRAINE
Number of pages
35
Pages from-to
1-35
UT code for WoS article
000374457100001
EID of the result in the Scopus database
2-s2.0-84962040811