Toeplitz operators on higher Cauchy-Riemann spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F17%3AA0000006" target="_blank" >RIV/47813059:19610/17:A0000006 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/17:00481139
Result on the web
<a href="https://www.math.uni-bielefeld.de/documenta/vol-22/32.html" target="_blank" >https://www.math.uni-bielefeld.de/documenta/vol-22/32.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Toeplitz operators on higher Cauchy-Riemann spaces
Original language description
We develop a theory of Toeplitz, and to some extent Hankel, operators on the kernels of powers of the boundary d-bar operator, suggested by Boutet de Monvel and Guillemin, and on their analogues, somewhat better from the point of view of complex analysis, defined using instead the covariant Cauchy-Riemann operators of Peetre and the second author. For the former, Dixmier class membership of these Hankel operators is also discussed. Our main tool are the generalized Toeplitz operators (with pseudodifferential symbols), in particular there appears naturally the problem of finding parametrices of matrices of such operators in situations when the principal symbol fails to be elliptic.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-25995S" target="_blank" >GA16-25995S: Function theory and operator theory in Bergman spaces and their applications II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Documenta Mathematica
ISSN
1431-0643
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
2017
Country of publishing house
DE - GERMANY
Number of pages
36
Pages from-to
1081-1116
UT code for WoS article
000411873800032
EID of the result in the Scopus database
2-s2.0-85034420849