2D reductions of the equation u_{yy} = u_{tx} + u_{y}u_{xx} - u_{x}u_{xy} and their nonlocal symmetries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F17%3AA0000034" target="_blank" >RIV/47813059:19610/17:A0000034 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/abs/10.1080/14029251.2017.1418052" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/14029251.2017.1418052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14029251.2017.1418052" target="_blank" >10.1080/14029251.2017.1418052</a>
Alternative languages
Result language
angličtina
Original language name
2D reductions of the equation u_{yy} = u_{tx} + u_{y}u_{xx} - u_{x}u_{xy} and their nonlocal symmetries
Original language description
We consider the 3D equation u_{yy}= u_{tx} + u_y u_{xx} - u_x u_{xy} and its 2D symmetry reductions: (1) u_{yy} = (u_y + y) u_{xx} - u_{x} u_{xy} - 2 (which is equivalent to the Gibbons-Tsarev equation) and (2) u_{yy} = (u_y + 2x) u_{xx} + (y - u_{x}) u{xy} - u_{x}. Using the corresponding reductions of the known Lax pair for the 3D equation, we describe nonlocal symmetries of (1) and (2) and show that the Lie algebras of these symmetries are isomorphic to the Witt algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nonlinear Mathematical Physics
ISSN
1402-9251
e-ISSN
1776-0852
Volume of the periodical
24
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
36-47
UT code for WoS article
000435599000004
EID of the result in the Scopus database
2-s2.0-85040015277