All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

2D reductions of the equation u_{yy} = u_{tx} + u_{y}u_{xx} - u_{x}u_{xy} and their nonlocal symmetries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F17%3AA0000034" target="_blank" >RIV/47813059:19610/17:A0000034 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.tandfonline.com/doi/abs/10.1080/14029251.2017.1418052" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/14029251.2017.1418052</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/14029251.2017.1418052" target="_blank" >10.1080/14029251.2017.1418052</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    2D reductions of the equation u_{yy} = u_{tx} + u_{y}u_{xx} - u_{x}u_{xy} and their nonlocal symmetries

  • Original language description

    We consider the 3D equation u_{yy}= u_{tx} + u_y u_{xx} - u_x u_{xy} and its 2D symmetry reductions: (1) u_{yy} = (u_y + y) u_{xx} - u_{x} u_{xy} - 2 (which is equivalent to the Gibbons-Tsarev equation) and (2) u_{yy} = (u_y + 2x) u_{xx} + (y - u_{x}) u{xy} - u_{x}. Using the corresponding reductions of the known Lax pair for the 3D equation, we describe nonlocal symmetries of (1) and (2) and show that the Lie algebras of these symmetries are isomorphic to the Witt algebra.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nonlinear Mathematical Physics

  • ISSN

    1402-9251

  • e-ISSN

    1776-0852

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    36-47

  • UT code for WoS article

    000435599000004

  • EID of the result in the Scopus database

    2-s2.0-85040015277